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Abstract

Today, software engineering is concerned less with individual programs than with large-scale
networks of interacting programs. For large-scale networks, engineering problems emerge

that go well beyond functional correctness (the purview of programming) and encompass
equally crucial nonfunctional qualities such as security, performance, availability, and fault
tolerance. A pivotal challenge, then, is to provide techniques to routinely construct systems
that have predictable nonfunctional quality. These techniques impose constraints on the
problem being solved and on the form solutions can take. This technical note shows how

smart constraints can be embedded in software infrastructure, so that systems conforming to
those constraints are predictable by construction.
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1 Introduction

Companies rely on software to deliver innovative solutions to customers. Such software often
executes in environments that have strict timing, safety, reliability, and security requirements.
Software malfunctions in these applications are expensive and possibly catastrophic. The
steep cost of developing highly reliable software poses a challenge for the entire software
industry. The scale of today's systems, not to mention that of tomorrow's, exposes the
fundamental inadequacies of relying on testing to achieve high assurance. The Predictable
Assembly from Certifiable Components (PACC) Initiative at the Carnegie Mellon"' Software
Engineering Institute (SEIsM) has developed an approach to ensure that the critical runtime
behavior of systems is predictable by construction, to reduce testing costs and hasten the
introduction of new high assurance software into the market.

The goal of the PACC Initiative at the SEI is to enable the construction of software systems
from components in a manner that allows for automatic prediction of system behavior

[Wallnau 03a]. This goal is realized by developing or enhancing component technologies,
using and extending property theories, and developing prototype tools and methods. This
technical note focuses on an approach to enhancing a component technology as a means to
ensure that software systems are predictable by construction.

1.1 Smart Constraints
Constraints lie at the heart of all engineering disciplines. An engineering problem may
present unique challenges, but the skilled engineer knows how to coerce it into a form that
can be solved with proven and well-defined techniques. These techniques impose constraints
on the problem being solved and the form solutions can take. Making it possible to solve
entire classes of problems predictably and routinely more than compensates for the loss of
freedom implied by these constraints.

Today's software engineering is concerned less with programs per se than with large-scale
networks of interacting programs. For large-scale networks, engineering challenges emerge

that go well beyond functional correctness (the purview of programming) and encompass
equally crucial nonfunctional qualities (sometimes called quality attributes [Boehm 78]) such
as security, performance, availability, and fault tolerance. A pivotal challenge for software
engineering research is to provide techniques to routinely construct systems that have
predictable nonfunctional quality. It follows, from our earlier assertions about engineering

® Carnegie Mellon is registered in the U.S. Patent and Trademark office by Carnegie Mellon
University.

SM SEI is a service mark of Carnegie Mellon University.
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disciplines, that these techniques will likely impose constraints on how future software
systems will be constructed.

This technical note shows how "smart" constraints can be embedded in software
infrastructure so that systems conforming to those constraints are predictable by construction.

1.2 About This Note

Section 2 establishes the container idiom as a method for introducing smart constraints and
explains how it is important for making predictions. Section 3 discusses the need for
prediction in an industrial setting and describes the application of the PACC performance
reasoning framework [Hissam 04b] to a problem in that setting. Section 4 illustrates how the
Pin component technology' was extended to use the container idiom to enforce the
constraints assumed by the PACC performance reasoning framework. We summarize in
Section 5.

Pin is a basic, simple component technology suitable for building embedded software applications

[Hissam 05].

2 CMU/SEI-2005-TN-040



2 The Container Idiom

The approach we use is governed by two premises: (1) smart constraints can be defined that
lead to systems with predictable runtime qualities and (2) component technology can be made

to package and enforce constraints to make software predictable by construction.

These premises are supported by two key assertions: (1) a runtime quality must be defined in
terms of observations that can be made on execution traces, and (2) a runtime quality is
predictable if and only if there is a theory for predicting future observations. The crucial

points here are that quality is defined relative to a predictive theory and that this theory must
yield confidence about its predictions.

The value of predictive theory is not new in science or in software engineering. The timing

behavior of a software system may be predictable using generalized rate monotonic
scheduling theory [Klein 93] or real-time queuing theory [Lehoczky 96]. Both theories
(generally all theories) make assumptions about the systems that are their subjects, and any
system that satisfies these assumptions is predictable. Smart constraints ensure that the
assumptions are satisfied; the constraints are smart because they are informed by predictive
theories.

It is one thing to define a smart constraint, but it is another to guarantee (rather than assume)
the constraint is satisfied. One recurring component technology idiom is depicted in Figure 1.
This idiom is particularly effective in packaging smart constraints because it imposes strict

rules on visibility, coordination, and other runtime behaviors. These, in turn, provide "hooks"
on which to hang additional smart constraints.

Defined connectors Certified properties

Prefabricated containers
Stimulus interface ------1 - ,,

Stimulus inefc I*....1- Response interface

Custom code Interaction Defined lifecycleI constraints

:*--Standard runtime

Figure 1: The Container Idiom
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In this idiom, custom software code is deployed into prefabricated containers [Ward-Dutton
00]. A container restricts the visibility of custom code to its external environment and to the
custom code from the environment.2 A software component in this idiom is a container
combined with custom code. Components are strictly reactive: they react only to stimuli
received through the container interface and respond only through the container interface. A

component runtime environment provides coordination mechanisms (or "connectors") and
implements other policies for managing resources shared by components.

The idiom does not describe a particular component technology: many implementations of

the idiom are possible and simple implementations can often be realized. What matters is that
container types, connector types, runtime environment, and an ability to place constraints on
allowable patterns of component interaction can all be used to encode, or package, smart
constraints. Moreover, the small number and uniformity of the abstractions in this idiom
considerably simplify the task of automating substantial portions of the construction and
prediction process-to yield predictability by construction.

2.1 Predictable by Construction

The idea of predictability by construction is simple and best understood by analogy. A Java or
C# compiler checks that programs are well-formed. One check is that a program satisfies the
type theory of the programming language. If this constraint is satisfied, then the compiler
guarantees certain properties of program execution (technically, safety properties).

In this context, at the level of assemblies of components instead of at the programming
language level, the same idea is applied. In place of type theories, we have behavior theories

for nonfunctional runtime qualities such as performance. In place of specifications in a
programming language, we use specifications in an architecture description language

(Construction and Composition Language [CCL]) [Wallnau 03b]. In effect, CCL formalizes
the container idiom and makes automated prediction and code generation possible. The result
is predictability by construction. If specifications in CCL are well-formed according to the

container idiom and satisfy additional reasoning-framework-specific constraints, the systems
they specify will be predictable by construction. The ultimate expression of predictability by
construction is to build only systems whose behaviors can be predicted. 3

Projects such as Pervasive Component Systems (PECOS) have already exploited the affinity
of component technology with predictable nonfunctional behavior [Nierstrasz 02]. However,
no previous work has generalized these ideas to multiple nonfunctional attributes or

emphasized the role of validation and certification to the extent reported in Predictable
Assembly of Substation Automation Systems. An Experiment Report [Hissam 02].

2 Different types of containers can play different roles in a global (architecture-defined) coordination

scheme. An example is the sporadic server container described in this technical note.
In the same way-to conclude the analogy-that the Java or C# compiler will successfully compile
only those programs that are type safe (and therefore well formed).
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2.2 Certifiable Quality

Analytic theories reveal which properties of the software must be known for its behavior to

be predictable. A component technology imposes a standard packaging of software that
includes how components are specified and what details about a component implementation
must be exposed by component suppliers. Taken together, these details provide a practical
basis for establishing objective quality standards for third-party software.

As an illustration, consider the prediction of the timing behavior of component assemblies

using real-time queuing theory [Lehoczky 96]. Among other things, this performance theory
assumes

* a scheduling discipline such as earliest deadline first (EDF)

* the identification of schedulable entities such as threads

* the first two moments of the arrival and service time distributions are known for each
stream of messages

The first property is satisfied by the component runtime environment; the second, by

containers. The third, however, must be satisfied by the component supplier.

Two points are worth noting from this illustration. First, an accurate measurement of the
moments for arrival and service time distributions is needed; this corresponds to the certified
properties in Figure 1. While it might be desirable, imposing requirements on the values

these measurements may take is considered a separate issue. Second, the performance theory
is required to give a precise definition of the measure; it may also provide strong guidance on

the measurement process itself.
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3 Containers Ensuring Performance in Critical Industrial

Applications

In this section, we report on the application of smart constraints using the container-based
idiom to a problem in industrial automation (specifically, industrial robotics) having
performance-critical (specifically, timing-behavior) runtime requirements.

3.1 Industrial Robot Controller

A question faced by a manufacturer of industrial robot controllers was this: could its software

controller be safely extended by third-party software having stochastic execution behavior,
while also guaranteeing best service to the extension without jeopardizing controller deadline

satisfaction?

The software controller can be thought of as a number of parallel, intercommunicating

threads of execution within the core controller platform. That platform typically consists of a
single Intel Celeron processor running VxWorks and is referred to as the main computer. The
main computer communicates with one or more computers called the axis computers.

Main Computer

- D A -]jj Axis Computers

Legend

M thread / task

Equeue
- communication

Figure 2: Tasks on the Main Computer

The problem faced by the manufacturer focuses on the interaction between tasks in the main

computer. The main computer is responsible for running programs (written in a high-level
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robot programming language) that generate work orders. 4 The work orders are decomposed
into subwork orders that ultimately result in the communication of microcoordinates to the
axis computer that contains the device drivers responsible for the actual movement of the
robotic arm (or arms).

The threads that execute on the main computer are a mix of periodic' and aperiodic6 tasks,

with some performing either synchronous or asynchronous inter-thread communication. In
the context of this problem, much of the asynchronous interthread communication of interest
is conducted through first in, first out (FIFO) queues. Third-party software extensions (task
M in Figure 2) are envisioned to be separate threads of control.

For this problem, only a subset of the threads housed on the main computer is deemed critical

(specifically, tasks At, B1, C, and M). Those threads of control are shown in Figure 2 and
their relevant performance characteristics are summarized in Table 1. Periodic tasks are
characterized as having constant interarrival times. Aperiodic tasks have random interarrival
times following an exponential distribution.

Table 1: Performance Description of Robot Problem Tasks

Task Priority Arrivals Execution Time

Exponentially distributed Exponentially distributed
A, Low with mean with mean

75 Ins 9 Ins

Constant Uniformly distributedB1  High 24 ins 1-2 ins

C Very Constant Uniformly distributed
High 4 ins 0.5-1.0 ins

Exponentially distributed Uniformly distributed
M Medium with mean 15-25 ins

100 ins

The details of the complete problem are described further in A Model Problem/br an Open

Robotics Controller [Hissam 04a].

It is not critical to know specifically what is in the program or what a work order is. It is sufficient
to know that the program consists of one or more commands to a robot (much like setting a goal,
such as "move here at this speed") that are broken down into one or more subwork orders (e.g.,
steps to achieve that goal).
A periodic task implements the response to a periodic event (one of a sequence of events having
constant interarrival intervals) and thus becomes ready to execute at fixed intervals [Klein 93].
An aperiodic task implements the response to an aperiodic event (one of a sequence of events not
having constant interarrival intervals).

CMU/SEI-2005-TN-040 7



3.2 Container for Third-Party Software Extensions

To answer the manufacturer's question, we developed the Xss reasoning framework ("p" for

latency, "ss" for sporadic server) [Hissam 04b]. As its central smart constraint, the Xss

framework assumes the use of sporadic server containers. The sporadic server container

implements the application-level protocol for the sporadic server scheduling algorithm

(SSSA) [Sprunt 89] and enforces the constraints assumed to exist by the Xss reasoning

framework. This is done to ensure that potential bursts of stochastic behavior are no more

invasive on the periodic portions of a system than an equivalent periodic task with similar

performance characteristics. The SSSA protects periodic tasks with hard deadlines from

bursts of high-priority stochastic events that trigger high-priority processing by other tasks.
The hallmark of the SSSA is that it creates a periodic virtual processor within which

stochastic events can be processed and predictably analyzed.

Adapted from Gonzdilez Harbour's work, Figure 3 depicts the general behavior of a task

following the SSSA [Gonzdilez Harbour 91 ]. The SSSA can be implemented in an operating

system's scheduler (e.g., kernel mode) [Shi 01] or within an application (e.g., user mode)

[Gonzdilez Harbour 91 ]. The container described in this report follows the latter; that is,

container threads execute at the user level.

, Replenishment

Aperiodic event

SS foreground Tss = 18

Periodic _ Tp 25, Sp 11

SS background _

10 12123 26 30

SS budget (Ss) = 10; replenishment (Tss) = 18

Figure 3: Example of a Sporadic-Server-Controlled Task

In this example, each aperiodic event takes five units of time to be serviced. The first two

aperiodic requests arrive at t=5 and t=12 and are serviced immediately because the sporadic

server starts with an execution budget of 10 units. At t=-5, the budget of the sporadic server is

decreased by five units of time. That decrease leaves a remaining execution budget of five

units, enough to permit the sporadic server to execute at foreground priority. Also at t=5, a

replenishment event is scheduled for t=-23 (i.e., 23 = event occurring at 5 + replenishment

period of 18). At t=12, the execution budget is again reduced by five units of time, the
replenishment is scheduled for t=30, and the sporadic server can still execute at foreground

priority. After t=12, the execution budget is exhausted. When the next aperiodic event arrives

at t=- 18, the sporadic server is restricted to execute at background priority. The additional

execution budget for five units of time is replenished at the scheduled times of /=-23 and t=30,
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respectively, for the first two requests, thereby restoring the execution budget of the sporadic

server.

To implement the SSSA at the application level (i.e., without explicit OS-level support), only
two key features of the runtime environment are necessary:

1. some form of synchronous, interprocess, or interthread communication

2. the ability for one process or thread to read and change another process or thread priority

The sporadic server manager, or SSManager, is a user-level thread that operates at system
high priority. The purpose of the SSManager is to manage one or more sporadic server tasks,
or SSTasks, each of which processes aperiodic events. An aperiodic task can be converted
into an SSTask by including two synchronous service requests to the SSManager: arm () and
request().

The high-level sequence diagrams that cover the sequence of events among the SSTask,
SSManager, and the host OS are shown in Figure 4 (for SSManager. arm ()7 and

SSManager. request () ).

SS task por- ty = MAX

.. ... ..... . ... .. ..... ..................... . .. . ....... ]

wait for request

wait for aperiodic event

aperiodic event

..................... .... .... .... .... .... .... .... ...
request service time

activate
SS manager

.< . . . . . . . . . . . . . . . . . . . . . . . ..

alt [ execution budget available ]

Schedule replenishment event
and decrease budget

SS task priority = foreground

[ else ]

SS task priority = background

Notation:
UML 2.0 notation
for sequence respond service time request
diagrams

CPU work

Figure 4: UML 2.0 Sequence Diagram of Application-Level SSSA:
Request and Arm

As an optimization, the implementation of arm () bypasses the SSManager and is marshaled
directly to the operating system to raise SSTask's priority to maximum.
In this figure, the call to request () is handled via message passing using an interprocess
communication mechanism routed from the sender to the receiver via the operating system.
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For the industrial robot controller, the third-party custom software used to extend the

controller (identified as that portion called CPU work in Figure 4) is encapsulated by a
prefabricated sporadic server container. The container, provided by the industrial
manufacturer, ensures that the protocol in Figure 4 is carried out correctly, restricts the
visibility of the software extension to the rest of the controller's environment, and governs
the extension's effects on the periodic portions of the core software controller. Using the
container idiom (discussed in Section 2), the component, then, becomes the combination of
the custom third-party software and the container that enforces the SSSA policy (Figure 5).

Third-partyofwr

"CPU Work"

SSSA Policy

Third-party extension as a software component

Figure 5: Third-Party Extension as a Software Component
in the Container Idiom

3.3 Predicting Performance for Third-Party Software Extensions

To make the analysis tractable, the problem is characterized as a single-subtask assembly
[Hissam 04b] where all the periodic tasks have been collapsed into one periodic task with

equivalent utilization. This approach allows the reasoning framework to consider the timing
effects that the periodic portions of the problem have on the stochastic portions of the system
(i.e., the third-party software extension) as a single effect. Analytically, the problem can be
abstracted into a system having two tasks, as shown in Figure 6: (1) one periodic task where
the periodic effects of tasks A,, B1, and C are collapsed into one (shown as TaskABC) and (2)
one aperiodic task, TaskM. 9 TaskABC executes at a priority higher than TaskM. When
TaskM is scheduled as a result of an aperiodic event, however, it will execute at a priority
higher than TaskABC if an execution budget is available. If an execution budget is not

available, TaskM will execute at a priority lower than TaskABC.

9 The meanings of the variables shown in Figure 6 and the rationale for the values given are
detailed in Performance Propert Theories for Predictable Assembly firom Certifiable Components
(PAC(O [Hissam 04b].
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Main Computer

TaskABC

U = 0/24

.. *. S

TaskM
T -100a

00 S _ 14

S =14a

[ Periodic
. Aperiodic

Figure 6: Analytic Representation of the Robotics Model Problem

The Xss reasoning framework can generate a suite of engineering performance curves to
provide insight into the expected timing behavior for the specified third-party software

extension, resulting in

* best-case average latency

* worst-case average latency

* average-case latency for a periodic task given a period (shown as T, in Figure 6) and

utilization (measured in percentage of processor usage for the periodic portions of the
problem; shown as U, in Figure 6)

To serve as design guidance, the curves created by the Xss reasoning framework use the

performance parameters (i.e., periods, interarrival times, execution time, and budgets for
aperiodic tasks) of the tasks in the system to establish bounds on the average service time of
extensions. The engineering performance curves generated by the Xss reasoning framework
(for the analytical problem in Figure 6) are shown in Figure 7.

For this problem, the curves show that in the best case (when no periodic tasks are executing)

the third-party software extension can perform its CPU work in about 15.14 ms. In the worst
case (when periodic tasks are consuming nearly all available CPU resources), the extension
can perform its work in about 17.79 ms. But in this specific case where the total utilization of
all the periodic tasks is approximately 42% (Up =10/24 from Figure 6) and the period of those
tasks is 24 ms (TR =24 from Figure 6), the average-case latency for TaskM is about 17.65 ms.

These curves show that it is possible to determine the best service to extensions of the

software controller by providing a suite of engineering performance curves based on the
specific timing parameters of all the periodic and aperiodic tasks within the controller. The
theory behind the Xss reasoning framework and the explanation of how it was applied to
answer this question are detailed in Per/brmance Property Theories/bor Predictable Assembly
from Certifiable Components (PACC) [Hissam 04b].
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Latency for Third-Party Software Extension by Up for Various Tp

18 U =0.4166

17.57

17.17
17~ -------- Wors-Cas L--tTpcl

Predicted Tpl
16.5 1 . 9 ms Tp:24

L) - Tp:301 6 Tp=50
16

Average-Case Latency -Tp1QQOO

Best-Case Latency

15 Predicted
15. 13953 ms

14.5
0 0.1 0.2 03 04 0,5 0.6 0.7 0.8 0.9 1

Periodic Utilization (Up)

Figure 7: Engineering Performance Curves for a Third-Party Software Extension

To make those predictions, the Xss reasoning framework makes assumptions about the

properties of the assembly and its components. Those assumptions become the smart

constraints to which the assembly (and components) must adhere. Such constraints can be

satisfied by the component runtime environment, containers, specifications, or the component

supplier. For the Xss reasoning framework, the smart constraints and the elements that

enforce those constraints are shown in Table 2.
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Table 2: Smart Constraints Enforced for the 2ss Reasoning Framework

Xss Smart Constraint Enforced By

Tasks are scheduled based on priority. Pin runtime

Tasks can be preempted by higher priority tasks. Pin runtime

Tasks have unique priorities and do not violate priority Assembly specification in CCL
ceiling protocol [Goodenough 88].

Assemblies of tasks are confined to a single processor. CCL

Each periodic event, whether clock- or message-based, CCL
is handled by one task (or a sequence of tasks). Each
periodic task has an associated period and an execution
time (or sequence of execution times).

All aperiodic events are funneled through a task CCL
managed as a sporadic server.

The sporadic server runs at the highest priority in the Sporadic Server Container and
system and is characterized by an execution budget and CCL
a replenishment period.

The service time for each aperiodic event is constant Sporadic Server Container and
and equal to the execution budget of the sporadic server, third-party component supplier'0

The aperiodic arrivals arrive according to an exponential Assembly specification in CCL
distribution with a specified mean interarrival interval.

Tasks managed as a sporadic server are allowed to use Sporadic Server Container
the CPU when either the sporadic server has sufficient
budget or the periodic tasks are idle.

As illustrated in Table 2, each of these constraints can be enforced-often in more than one

way. Further, such smart constraints are addressed where it best makes sense. For instance,
having a preemptive, fixed-priority scheduler is best handled by the runtime environment,

which is naturally designed to schedule task execution.

However, the way that a constraint can be addressed most adequately is not always obvious.

For instance, it would be quite possible for a third-party component provider (e.g., the

developer of an extension to the robot controller) to be required to adhere to the SSSA,

10 For Xss, it is assumed that the execution time of the supplied component is the certified execution

time of the component and that the supplied component enforces that certified property.
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perhaps via one or more application programming interfaces (APIs) provided by the
industrial manufacturer. This approach would essentially delegate enforcement of that smart

constraint to the component provider. However, it would be possible for the provider to
circumvent that policy fairly easily.

To prevent such neglect (be it intentional or not), the container used to enforce the SSSA

policy removes the need to delegate such enforcement to the component provider. That way,
the developer of the industrial robotics application can insert the provided extension into the
container needed to enforce the smart constraints required for that particular component.

14 CMU/SEI-2005-TN-040



4 A Container Implementation

In previous work, although it was prefabricated, the container had to be compiled with the

custom code to create one component realized as a dynamic link library (DLL) [Hissam 05].
Even though this approach worked well, it had drawbacks that limited the freedom of a

developer composing an assembly from components. For example, suppose a developer
acquired a component that was compiled with a standard container. While designing the
software assembly, the developer might conclude that it would be better to have the
component adhere to the SSSA. In the container idiom, this constraint can be enforced by
using a specialized container. However, in order to use the same functionality with a different
container, the developer would need to obtain a new DLL from the component provider. In
turn, the provider would need to recompile the same custom code for use with the new
container. It is easy to see how this process can be an inconvenience in practice.

A different approach gives more freedom to developers. In the new implementation of the

container idiom, the container and the custom code are packaged in separate DLLs. This
allows a Pin component [Hissam 05] to be created dynamically at runtime by assembling a
container and the custom code together. Also, it eliminates the need for the component
provider to know a priori in which container the code is eventually going to be enclosed. As
shown in Figure 8 using UML 2.0 notation [OMG 03], the custom code is encapsulated in a
DLL, providing the ComponentCore"1 interface that is used by the container to invoke the

custom code to respond to requests from other components or the assembly controller. In
addition, the custom code DLL requires the Container interface in order to interact with its
environment and other components. Mirroring these provided and required interfaces, the
container DLL requires the ComponentCore interface and provides the Container interface. In
addition, the container implements the Component interface through which the component as

a whole interacts with its environment.

In its previous versions, the ColnponentCore interface was referred to as the User Code API
[Hissarn 05]. Since Pin is our research component technology, we have taken the liberty to change
it as our ideas evolve. We plan to publish a report in the near future with updated Pin specifications.

CMU/SEI-2005-TN-040 15



Custom Code

ComponentCore Container

ComponentCore Container

C StandardContainer
Component

Figure 8: Parts of a Component

The dependencies between the custom code and the container have not changed with respect

to the previous implementation of the container idiom [Hissam 05]. However, the
implementation was changed to be able to bind their interfaces dynamically at runtime rather

than at compile time. Figure 9 shows how a container and custom code are now composed to
create a Pin component. Once the two parts are assembled together, they present only a
Component interface, while the other interfaces are hidden.

This is a DLL

Regular Component

Custom Code

ComponentCore Container

ComponentCore Container

«delegate

Component StandardContainer

Component

This is a DL

This component is
assembled at runtime

Figure 9: Component with the Container Idiom
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Should the developer want to use the same custom code in a Pin component adhering to the
SSSA, only a binding of the same custom code DLL with the appropriate container is needed,

as depicted in Figure 10. In that way, the constraints of the sporadic server are enforced, and
the component is guaranteed to satisfy the assumptions of the Xss reasoning framework used
to do predictions.

SS Component

Custom Code

ComponentCore Container

ComponentCore Container

«delegate

Component SSContainer E

Component

Figure 10: Using the Same Custom Code with a Different Container

The following sections describe some details of the implementation that was used to support

the dynamic version of the container idiom and compare an example of its use to the original
approach.

4.1 Implementation Details

In order to support the dynamic binding of containers and custom code, the assembly

controller life cycle in the Pin interface was modified by inserting the steps shown in the
thicker ovals in Figure 11. The first step in creating a Pin component is to load the container
DLL. This is achieved with the following function in the Pin interface:

TContainer* LoadContainer(char* containerName);

This function loads a container in memory so that it can be used to create a component

dynamically, when the custom code with the following function is loaded in it:

TPinComponent* LoadComponent (char* componentCoreName,

TContainer* pContainer);

The LoadComponent function performs two tasks. First, it loads the custom code-also
known as the component core. Second, it carries out the dynamic binding of the interfaces.
The result is a Pin component ready to be instantiated. Although component instantiation and

configuration are done as usual, another step that allows the container in a component
instance to be configured is added. This step is optional because some containers, such as the

standard container, do not require any particular configuration. However, some containers do
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require configuration; the SSContainer described in the next section is one example.

Container configuration is done through the following function.

BOOL ConfigureContainer (TComponentlnstance* pInstance,

void* pContainerData);

The rest of the life cycle proceeds as before [Hissam 05] except that, after components are

unloaded, containers must be unloaded as well.

ConfigureComponent
Start Pin Comnnt Reset Assembly
Interface Intne Priority

Connect Desro" Destroy "

Load Container Components Component
DLLs "Instances

Set Assembly -

Load Priority to Unload' , Unload
Component RTMAX C

DLLs .......... Components

Start
Create Component Unload

Component Instances c D
Instances C i

Set Reaction WaitforEnd
Properties Event Stop Pin

Interface

Configure StopComponent = J
ContainersCopnt~~~~Instances / L

Figure 11: New Assembly Controller Life Cycle

Given that most new containers will not differ much from the standard Pin container, an
inheritance mechanism for containers was implemented. The function Ext endCont ainer

shown below loads a container extending a base container by overriding only those functions
of the base container that are redefined in the container being loaded.

TContainer* ExtendContainer (char* containerName,

TContainer* pBaseContainer);
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4.2 The Container at Work

In order to detail the use of containers to enforce smart constraints, this section illustrates an
example based on the industrial robotics application introduced in Section 3.

Robotic Problem

A<period, 24ms>

TaskABC
Clocki

ApClock
- /TaskM TaskMManager

A<distribution, exponential>

Figure 12: Pin Assembly for Analysis of Industrial Robotics Problem

We will compare two implementations of this problem that we will refer to as a and 3.
Implementation a was developed without using the container idiom as a vehicle for enforcing

smart constraints. Implementation P was developed using the dynamic binding
implementation of the container idiom, and containers were used to enforce smart constraints.

Since this assembly is only a model of a real problem and we want to analyze it with a
performance reasoning framework, the components TaskABC and TaskM (shown in Figure
12) do not perform specialized functions; they only create workload (i.e., CPU work) on the
processor. Execution time is given to the component instance as properties when the
instance is created. The component TaskABC is an instance of the Synthetic component.
Although TaskM must perform the same function-create workload-it must adhere to the
SSSA. Therefore, TaskM has to be an instance of a different component. Implementations a
and P are different because of the means used to conform TaskM to the SSSA.

In implementation a, TaskM is an instance of SSTask, which implements part of the SSSA
(specifically SSManager. request () and SSManager. arm () from Figure 4). The rest
(and most) of the sporadic server logic is carried out by TaskMManager, an instance of the
SSManager component. This component tracks budget, controls running tasks' priorities, and
performs budget replenishments. Figure 12 shows how the TaskM and TaskMManager
instances are connected. Before blocking on a wait for a sink pin stimulus, SSTask sets itself

to very high priority. When the stimulus arrives, it requests an execution budget from
SSManager through a synchronous pin before performing its function. SSManager, in turn,

sets the priority of SSTask based on the budget availability.
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The following code snippet shows how the components are loaded and the instances are

created and connected in implementation a. Some details have been intentionally left out to
avoid cluttering the example.

/* load components */

pSyntheticComponent = LoadComponent ("Synthetic.dll");

pSSTaskComponent = LoadComponent("SSTask.dll");

pSSManagerComponent = LoadComponent ("SSManager. dli");

pClockComponent = LoadComponent("SimpleClock.dll");

pAperiodicSourceComponent = LoadComponent ("DistClockl0S.dll");

/* create instances */

pClockl = CreateInstance(pClockComponent, "Clockl",

clocklProperties,

sizeof(clocklProperties));

pTaskABC = CreateInstance(pSyntheticComponent, "TaskABC",

taskABCProperties,

sizeof (taskABCProperties));

pAperiodicSource = CreateInstance (pAperiodicSourceComponent,

"ApClock",

apClockProperties,

sizeof (apClockProperties));

pTaskM = CreateInstance(pSSTaskComponent, "TaskM",

taskMProperties,

sizeof (taskMProperties));

pTaskMManager = CreateInstance (pSSManagerComponent, "TaskMManager",

taskMManagerProperties,

sizeof (taskMManagerProperties));

/* connect pins */

SourceAddSinkPin(pClockl, 0, pTaskABC->UniqueName, 1);

SourceAddSinkPin(pAperiodicSource, 0, pTaskM->UniqueName, 1);

SourceAddSinkPin(pTaskM, 0, pTaskMManager->UniqueName, 0);

This implementation has two main disadvantages. First, even though the SSTask and the
Synthetic components perform the same function (i.e., create workload), the same code has to

be compiled in two different DLLs so that one of them complies with the SSSA. This
requirement leads to maintenance issues in the best case and to other problems if the

component is developed by a third party (see the discussion following Table 2). The second
issue is that the approach lacks modularity. The component needs to know about the sporadic

server because it has to implement part of the algorithm. Furthermore, it needs an additional
source pin in order to interact with the SSManager. This, in turn, results in a more
fundamental concern: the constraints of the sporadic server are not really enforced on the

component; instead the developer has to trust that the component provider adhered correctly

to the constraints.
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In implementation 3, the creation of workload is implemented in a single DLL, namely

Synthetic.dll. The Synthetic component, of which TaskABC is an instance, is created at

runtime by binding the custom code in Synthetic.dll with the standard container in

PinContainer.dll. The complete implementation of the SSSA is encapsulated in the container

SSContainer.dll; therefore, there is no need for an instance of SSManager. In order to get the

same functionality provided by the custom code in Synthetic.dll and maintain compliance

with the SSSA, the SSTask component is created at runtime by binding the custom code with

the container in SSContainer.dll. Note that the custom code knows nothing about the SSSA.

The following code shows how all this is achieved in implementation 3.

/* load containers */

pStandardContainer = LoadContainer("pinContainer.dll");

pSSContainer = ExtendContainer("SSContainer.dll", pGenericContainer);

/* load components */

pSyntheticComponent = LoadComponent ("Synthetic.dll",

pStandardContainer);

pSSTaskComponent : LoadComponent("Synthetic.dll", pSSContainer);

pClockComponent : LoadComponent ("SimpleClock.dll",

pStandardContainer);

pAperiodicSourceComponent = LoadComponent ("DistClock200.dll",

pStandardContainer);

/* create instances */

pClockl = CreateInstance(pClockComponent, "Clockl",

clocklProperties,

sizeof(clocklProperties));

pTaskABC = CreateInstance(pSyntheticComponent, "TaskABC",

taskABCProperties,

sizeof (taskABCProperties));

pAperiodicSource = CreateInstance (pAperiodicSourceComponent,

"ApClock",

apClockProperties,

sizeof (apClockProperties));

pTaskM = CreateInstance(pSSTaskComponent, "TaskM",

taskMProperties,

sizeof (taskMProperties));

ConfigureContainer(pTaskM, &ssContainerParams);

/* connect pins */

SourceAddSinkPin(pClockl, 0, pTaskABC->UniqueName, 1);

SourceAddSinkPin(pAperiodicSource, 0, pTaskM->UniqueName, 1);
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5 Summary

This technical note described the use of the container idiom as an effective means of
packaging smart constraints to impose strict rules on visibility, coordination, and other
runtime behaviors of engineered software. Smart constraints are the assumptions and
invariants that must be satisfied so that reasoning frameworks can predict the behavior of

their subject software systems. This approach was illustrated by predicting the average-case
latency of a third-party extension introduced into an existing robot controller platform
through the use of a container that enforced the SSSA. The SSSA exhibited the assumptions

and invariants required by the Xss reasoning framework.

Containers appear in several different component technologies. What was described here is
not particular to the Pin component technology. Moreover, there are ways to enforce smart

constraints in a component technology other than the container idiom. The ability to make
those constraints explicit is important, because it permits us to exploit software component
technology as a mechanism to encode, or package, smart constraints and allow the software
system to be built predictably.

In PACC, we are investigating and documenting the use of component technologies to

package smart constraints. In future work, we expect to introduce additional containers and
interaction types to satisfy the invariants of more general reasoning frameworks and of those
frameworks needed to predict quality attributes beyond performance.
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